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Students’ challenges with fractions are well documented.  On the 2007 NAEP test, fewer than half 
of Grade 8 students (49%) were able to correctly identify which arrangement of the fractions 2/7, 
1/2, and 5/9, showed the fractions ordered from least to greatest. On the 2009 NAEP test, only 25% 
of Grade 4 students provided the correct answer (5/8) to the following question: Which fraction 
has a value closest to 1/2? (Answer choices were 5/8, 1/6, 2/2, and 1/5.) These findings are not 
surprising to many teachers, particularly those who teach middle school mathematics. Research 
indicates that understanding fractions is a “foundational skill essential to success with algebra,”(U.S. 
Department of Education, 2008) and that that there is a strong positive correlation between 
students’ understanding of fractions and their overall success in mathematics (Gomez, 2009).  

It is often tempting to dismiss student errors as merely careless mistakes or a sign of global 
misunderstanding of a topic. Interpreting errors as careless mistakes often leads teachers to 
assume that the student would produce the correct answer, if given the question on another day. 

Interpreting the student error as a sign of global misunderstanding of the topic often leads to completely reteaching the 
content. In many cases, however, student errors and incorrect responses are the result of students’ “partial understandings” 
(Saxe et al, 2010) or correct answers to slightly different questions (Wells & Coffey, 2005). Instead of considering incorrect 
responses as errors or mistakes to be avoided, Saxe et al. take the position that they are often a normal part of the 
development of students’ understanding of a topic. Exposing and discussing students’ partial understandings can be a very 
productive instructional strategy for deepening and refining students’ thinking. Wells & Coffey (2005) discuss how students’ 
incorrect responses may actually be correct answers to related but different questions. For example, both 1/5 and 2/5 could 
be considered correct answers to the question of how to fairly share two candy bars among five children, depending on 
what is considered the whole. If the whole is one candy bar, then each child would get 2/5 of a candy bar.  On the other 
hand, if the whole is the candy, then each child would get 1/5 of the candy.  A third possibility is that each child would get 
1/5 of each candy bar.  

In this article we share examples of common student errors identified in Beyond Pizzas and Pies: 10 Essential Strategies for 
Supporting Fraction Sense, (McNamara & Shaughnessy, 2010) and discuss how these errors are often rooted in student 
understanding. By approaching student errors from this perspective, teachers can acknowledge what students do know 
and understand and build on this to guide students to deeper and more robust understanding of complex mathematical 
topics.

	 Examples

	 Example 1: Write a fraction for the shaded region:

	
  

Figure 1. 

	 Student Response: 1/3
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While the student’s response of “1/3” would be considered incorrect, it does indicate understanding of conventional 
fraction notation. By identifying the shaded region as 1/3, the student understands that when writing a fraction to name a 
shaded part of a region, the numerator indicates the number of parts that are shaded (in this case “1”) and the denominator 
indicates the total number of parts that constitute the whole (in this case “3”). This response could be considered an 
example of the student’s partial understanding, in that he/she correctly identifies a relationship between the shaded part 
and the whole region but does not understand that the relationship between the shaded and unshaded parts is not strictly 
discrete (i.e., one shaded part out of three parts) but is also proportional (three of the shaded parts would not completely 
cover the entire region). In addition, the student’s response of “1/3” would be correct if the region were divided into 
three equal parts. By acknowledging what the student who answers “1/3” does understand about fraction notation, and 
engaging students in a discussion about whether the shaded region shows 1/3 or 1/4 of the larger square, teachers can 
help students solidify their understanding of what fractions actually mean.    

	 Example 2:  Circle the larger fraction:	  5/6 	  7/8 

	 Student Response: Student circles 5/6 and writes “If the denominator is smaller, the piece is bigger.”

This response indicates that the student understands that when a quantity or region is divided into fewer pieces, (i.e., six 
pieces versus eight pieces) each resulting piece will be bigger. This is an idea that is often hard for students to understand, 
as students initially believe that sixths are smaller than eighths because six is less than eight. In this case, however, the 
student is only attending to denominators of the fractions, not seeming to realize that in order to compare two fractions, 
both the numerator and denominator need to be considered. If the question had been changed slightly to read, “Circle 
the larger fraction: 1/6 or 1/8” or “Which fraction has the larger denominator, 5/6 or 7/8?” then the student’s thinking would 
net the correct answer. Building on the student’s understanding of the relationship between the value of the denominator 
and the size of the resulting parts, while helping him/her understand the role of the numerator in understanding fractional 
values, teachers can help students develop more complete understanding of fraction values.

	 Example 3: Patrick orders a cheese pizza at Pizza Delight.  He ate 1/2 of his pizza. Kevin orders a cheese pizza from 		
	 Vinny’s Pizza. He ate 1/3 of his pizza. Who ate more pizza?

	 Student Response: Student chooses Patrick and writes “1/2 is bigger than 1/3.”

This task was designed to assess students’ understanding of the role of context in fraction comparison tasks. Like the 
response shown in Example 2, above, the student who chooses Patrick is applying an important idea about fraction 
comparison. This student understands that 1/2 of something is greater than 1/3 of something. What this student may not 
understand is that a statement like “1/2 is greater than 1/3” implies that the wholes are the same (i.e., 1/2 of a large pizza 
from Pizza Delight is larger than 1/3 of that same pizza) or the same size (i.e., 1/2 of a large pizza from Vinny’s Pizza is larger 
than 1/3 of another large pizza from Vinny’s Pizza). In the example given, this cannot be assumed as the boys ordered pizza 
from two different shops and the sizes of the pizzas are not provided, thus there is no way to compare the two fractions. 
Had the question read, “Patrick and Kevin both ordered large pizzas from Tony’s Pizza Shop. Patrick ate 1/2 of his pizza. 
Kevin ate 1/3 of his pizza. Who ate more pizza?” then the response “Patrick” would be correct. By contrasting the question 
involving two different pizza shops with the one involving both boys ordering the same size pizza from the same shop, 
teachers can help students identify the information needed to make an accurate comparison.

 



3

Student errors: What can they tell us about what students DO understand? continued

© 2011 Math Solutions  www.mathsolutions.com

	 Example 4:  

	 Student Response: Student agrees with the statement.

By agreeing with the statement “10/12 is twice as large as 5/6,” the student correctly identifies the relationship between 
the numerators (10 is twice as large as 5) and denominators (12 is twice as large as 6) of the two fractions. The student may 
also be familiar with the procedure of multiplying by n/n to create an equivalent fraction, but likely does not understand 
that multiplying by 2/2, while it changes the value of each part of the fraction (doubling the numerator and denominator), 
does not change the value of the resulting fraction. This student may not fully understand that 2/2 = 1, and that multiplying 
by 2/2 is the same as multiplying by 1, thus creating a new fraction that looks different but has the same value. If the 
statement were changed to read, “The numerator and denominator in 10/12 are twice as large as the numerator and 
denominator in 5/6,” then the student’s answer would be correct. Having students analyze statements like “10/12 is twice 
as large as 5/6,” and modifying them by changing the wording so that they are correct, can help students to refine their 
thinking and attend to precise use of mathematical language. 

Conclusion

Building on the knowledge that students draw upon as they make sense of mathematics is an essential aspect of 
supporting their learning. By viewing mistakes and student errors as indications of partial understanding or correct answers 
to slightly different questions, teachers can use student thinking as a resource to help students to deepen and refine their 
thinking. Incorrect responses can be a wonderful starting place for discussion and analysis of important and challenging 
mathematical ideas.   In our work and in the work of our colleagues, we have found that engaging in discussions of answers 
produced by “partial understandings,” or correct answers to somewhat different questions, can be beneficial for all students. 
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